3.360 \(\int \frac{\cos ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=188 \[ \frac{\sin (e+f x) \cos (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a b f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

[Out]

(Cos[e + f*x]*Sin[e + f*x])/(a*f*Sqrt[a + b*Sin[e + f*x]^2]) + (Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e +
f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(a*b*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (Sqrt[Cos[e +
 f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*f*Sqrt[a + b*
Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.183802, antiderivative size = 188, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3192, 412, 493, 426, 424, 421, 419} \[ \frac{\sin (e+f x) \cos (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a b f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(Cos[e + f*x]*Sin[e + f*x])/(a*f*Sqrt[a + b*Sin[e + f*x]^2]) + (Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e +
f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(a*b*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (Sqrt[Cos[e +
 f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*f*Sqrt[a + b*
Sin[e + f*x]^2])

Rule 3192

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rule 412

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1)*(c
+ d*x^n)^q)/(a*n*(p + 1)), x] + Dist[1/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(n*(p
 + 1) + 1) + d*(n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p,
 -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]

Rule 493

Int[(x_)^(n_)/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/b, Int[Sqrt[a +
 b*x^n]/Sqrt[c + d*x^n], x], x] - Dist[a/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c,
 d}, x] && NeQ[b*c - a*d, 0] && (EqQ[n, 2] || EqQ[n, 4]) &&  !(EqQ[n, 2] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-x^2}}{\left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{b f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{a b f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{a b f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{b f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{a f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a b f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{b f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.301733, size = 133, normalized size = 0.71 \[ \frac{-\sqrt{2} a \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )+\sqrt{2} a \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )+b \sin (2 (e+f x))}{\sqrt{2} a b f \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[2]*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - Sqrt[2]*a*Sqrt[(2*a + b - b*Cos
[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*Sin[2*(e + f*x)])/(Sqrt[2]*a*b*f*Sqrt[2*a + b - b*Cos[2*(e +
f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.058, size = 145, normalized size = 0.8 \begin{align*} -{\frac{1}{ab\cos \left ( fx+e \right ) f} \left ( \sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a-\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}a{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) +b \left ( \sin \left ( fx+e \right ) \right ) ^{3}-b\sin \left ( fx+e \right ) \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

-((cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a-(cos(f*x+e)^2)^(1/2
)*((a+b*sin(f*x+e)^2)/a)^(1/2)*a*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))+b*sin(f*x+e)^3-b*sin(f*x+e))/a/b/cos(f*x
+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \cos \left (f x + e\right )^{2}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^2/(b^2*cos(f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a
^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)